This function is used instead of polar_coords if you have raw
RNA-Seq count data. It takes 2 DESeqDataSet objects, extracts statistical
results and converts the results to a 'volc3d' object, which can be directly
plotted.
deseq_polar( object, objectLRT, contrast = NULL, data = NULL, pcutoff = 0.05, padj.method = "BH", filter_pairwise = TRUE, ... )
| object | An object of class 'DESeqDataSet' with the full design formula.
The function |
|---|---|
| objectLRT | An object of class 'DESeqDataSet' with the reduced design
formula. The function |
| contrast | Character value specifying column within the metadata stored
in the DESeq2 dataset objects is the outcome variable. This column must
contain a factor with 3 levels. If not set, the function will select the
last term in the design formula of |
| data | Optional matrix containing gene expression data. If not supplied,
the function will pull the expression data from within the DESeq2 object
using the DESeq2 function |
| pcutoff | Cut-off for p-value significance |
| padj.method | Can be any method available in |
| filter_pairwise | Logical whether adjusted p-value pairwise statistical tests are only conducted on genes which reach significant adjusted p-value cut-off on the group likelihood ratio test |
| ... | Optional arguments passed to |
Calls polar_coords to return an S4 'volc3d' object
polar_coords, voom_polar,
DESeq in the DESeq2 package
# \donttest{ library(DESeq2) counts <- matrix(rnbinom(n=1500, mu=100, size=1/0.5), ncol=15) cond <- factor(rep(1:3, each=5), labels = c('A', 'B', 'C')) # object construction dds <- DESeqDataSetFromMatrix(counts, DataFrame(cond), ~ cond) #> converting counts to integer mode # standard analysis dds <- DESeq(dds) #> estimating size factors #> estimating dispersions #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing # Likelihood ratio test ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1) #> using pre-existing size factors #> estimating dispersions #> found already estimated dispersions, replacing these #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing polar <- deseq_polar(dds, ddsLRT, "cond") volcano3D(polar) radial_ggplot(polar)# }